Engineering Design File

Evaluation of ⁹⁹Tc Drinking Water Dose for Oxidizing Sorption Coefficient in the Tank Grout

Portage Project No.: 2121.00 Project Title: Tank Farm Facility

TEM-0104 03/30/2004 Rev. 0

ENGINEERING DESIGN FILE

PEI-EDF- 1024 Rev. 0 Page 1 of 4

Portage Project No.: <u>2121.00</u>
Project/Task: <u>Tank Farm Facility</u>
Subtask: Performance Assessment

4. Title: Evaluation of 99Tc Drinking Water Dose for Oxidizing Sorption Coefficient in the Tank Grout

5. Summary:

The effect on drinking water dose for ⁹⁹Tc using an oxidizing grout sorption coefficient was evaluated. The ⁹⁹Tc groundwater concentration peak arrives at 842 years for the oxidizing sorption coefficient in comparison to a peak groundwater concentration arrival time of 14,590-year post-closure for the reducing grout sorption coefficient. The groundwater arrival time coincides with the ¹²⁹I peak resulting in a combined drinking water dose of 1.3 mrem/yr. However, the total drinking water dose for the Tank Farm Facility dose would not exceed the drinking water performance objective of 4 mrem/yr.

6. Distribution: (Portage, Inc.)

Lisa Aldrich, Portage Document Control (Original)

Keith Lockie, DOE Idaho

Kerry Martin, Portage

Keith Quigley, CWI

Nick Stanisich, Portage

Dave Thorne, Portage

7. Review (R) and Approval (A) Signatures:

(Identify minimum reviews and approvals. Additional reviews/approvals may be added.)

		Printed Name/		
	R/A	Organization	Signature	Date
Author	A	Dave Thorne	Warl John	08/01/05
Independent Review	R	Nick Stanisich	MA	08/01/05
Project Manager	R/A	Kerry Martin	Veery madi	08/01/05

ENGINEERING DESIGN FILE

PEI-EDF- 1024 Rev. 0 Page 2 of 4

CONTENTS

1.	INTRODUCTION	3
2.	RESULTS	3
3.	CONCLUSIONS	4
4.	REFERENCES	4

I. INTRODUCTION

The Performance Assessment (PA) (DOE-ID 2003) for the Tank Farm Facility (TFF) evaluated the groundwater drinking water doses for ⁹⁹Tc using a reducing sorption coefficient of 2,500 mL/g. This resulted in a peak release of ⁹⁹Tc from the tank/vault system at 12,206 years post-closure and a peak drinking water dose of 0.12 mrem/yr at 14,590 years post-closure.

The sorption coefficient for 99 Tc in grout varies between oxidizing and reducing conditions. Therefore, the effect on the drinking water dose presented in the PA for 99 Tc was evaluated using an oxidizing grout sorption coefficient. The grout sorption coefficient (i.e., K_d) for oxidizing conditions varies between 0.001 and 0.01 m^3 /kg according to Bradbury and Sarott (1995). Therefore, similar to the TFF PA methodology, the midpoint of the range was assigned for the conservative (i.e., compliance case) with a value of 0.05 mL/g. For comparison, the reducing K_d for 99 Tc is 2,500 mL/g. The TFF PA assumed an oxidizing vault K_d at the low end of 0.001 m^3 /kg. The vault value was assumed to be the same as used in the PA for this analysis.

2. RESULTS

The resulting groundwater drinking water doses are provided in Figures 1 and 2.

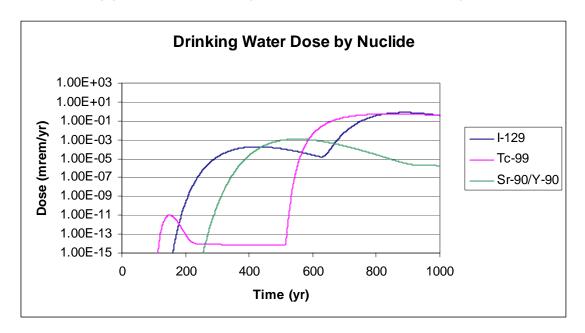


Figure 1. Drinking water doses for individual radionuclides (99Tc oxidizing grout K_d).

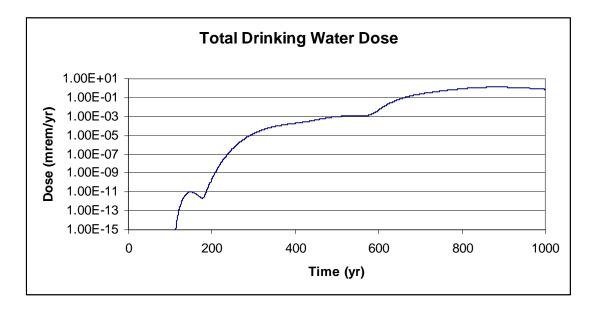


Figure 2. Total drinking water doses for individual radionuclides (99Tc oxidizing grout K_d).

The total drinking water dose increases to a value of 1.3 mrem/yr for Tank WM-182 with a ⁹⁹Tc inventory of 0.764 Ci. All other inventories for ⁹⁹Tc in the sandpad and the other radionuclides in the sandpad and tanks were held at their original values from the TFF PA.

The ⁹⁹Tc tank peak drinking water dose occurs at 842 years at a dose of 0.54 mrem/yr. The total drinking water dose peaks at 874 years due to the combined doses from ⁹⁹Tc and ¹²⁹I. The drinking water dose contributions from ⁹⁹Tc and ¹²⁹I to the total drinking water dose at this time are 0.54 and 0.76 mrem/yr, respectively.

3. CONCLUSIONS

The effect on drinking water dose for ⁹⁹Tc using an oxidizing grout sorption coefficient was evaluated. The ⁹⁹Tc groundwater concentration peak arrives at 842 years for the oxidizing sorption coefficient in comparison to a peak groundwater concentration arrival time of 14,590-year post-closure for the reducing grout sorption coefficient. The groundwater arrival time coincides with the ¹²⁹I peak resulting in a combined drinking water dose of 1.3 mrem/yr. However, the total drinking water dose for the TFF dose would not exceed the drinking water performance objective of 4 mrem/yr.

4. REFERENCES

Bradbury, M. H., and F. A. Sarott, 1995, *Sorption Databases for the Cementitious Near-Field of a LLW Repository for Performance Assessment*, Paul Scherrer Institute, March 1995.

DOE-ID, 2003, Performance Assessment for the Tank Farm Facility at the Idaho National Engineering and Environmental Laboratory, DOE/ID-10966, Revision 1, U.S. Department of Energy Idaho Operations Office, April 2003.